Supplementary Material Learning the Depths of Moving People by Watching Frozen People

Zhengqi Li¹ Tali Dekel² Forrester Cole² Richard Tucker² Noah Snavely^{1,2} Ce Liu² William T. Freeman² ¹ Cornell Tech, Cornell University ² Google Research

This document includes the following:

1. Mathematical derivation of depth from motion parallax (described in Section 4 of the main manuscript).

- 2. Mathematical derivation of error metrics (described in Section 5 in the main manuscript).
- 3. Qualitative comparison to parametric human model fitting.

1. Derivations of depth from motion parallax

Here we provide detailed derivations of depth from motion parallax using the Plane+Parallax representation (Section 4.1). Recall in the main manuscript, we define the relative camera pose as $\mathbf{R} \in SO(3)$, $\mathbf{t} \in \mathbb{R}^3$ from source image I^s to reference image I^r with common intrinsics matrix \mathbf{K} . We denote the forward flow from I^r to I^s as \mathbf{f}_{fwd} , and the backward flow from I^s to I^r as \mathbf{f}_{bwd} . Let Π denote a real or virtual planar surface, and let d'_{Π} denote the distance between the camera center of source image I^s and the plane Π , and h the distance between the 3D scene point corresponding to 2D pixel \mathbf{p} and Π . It can be shown (See Appendix of [2] for full intermediate derivations) that

$$\mathbf{p} = \mathbf{p}_w + \frac{h}{D_{\rm pp}(\mathbf{p})} \frac{t_z}{d'_{\rm II}} \mathbf{p}_w - \frac{h}{D_{\rm pp}(\mathbf{p})d'_{\rm II}} \mathbf{K} \mathbf{t}$$
(1)

$$=\mathbf{p}_{w} + \frac{h}{D_{pp}(\mathbf{p})d'_{\Pi}}(t_{z}\mathbf{p}_{w} - \mathbf{Kt})$$
⁽²⁾

where $D_{pp}(\mathbf{p})$ is the estimated depth at \mathbf{p} in the reference image I^r , t_z is the third component of translation vector \mathbf{t} , and \mathbf{p}_w is the 2D image point in I^r that results from warping the corresponding 2D pixel (by optical flow \mathbf{f}_{fwd}) in I^s by a homography \mathbf{A} :

$$\mathbf{p}_{w} = \frac{\mathbf{A}\mathbf{p}'}{\mathbf{a}_{3}^{T}\mathbf{p}'}$$
(3)
where $\mathbf{A} = \mathbf{K} \left(\mathbf{R} + \mathbf{t} \frac{{\mathbf{n}'}^{T}}{d'_{\Pi}} \right) \mathbf{K}^{-1}$

where $\mathbf{p}' = \mathbf{p} + \mathbf{f}_{\text{fwd}}(\mathbf{p})$, \mathbf{a}_3^T is the third row of \mathbf{A} , and \mathbf{n}' is normal of plane Π with respect to the camera of source image I^s . Note that the original paper [2] divides the P+P representation into two cases depending on whether $t_z = 0$, but we combine these two cases into one equation shown in Equation 2 by algebraic manipulations.

Now, if we set plane Π at infinity, using L'Hôpital's rule, we can cancel out H and d'_{Π} and obtain the following equations:

$$\mathbf{p} = \mathbf{p}_w + \frac{t_z \mathbf{p}_w - \mathbf{K} \mathbf{t}}{D_{pp}(\mathbf{p})}$$

$$D_{pp}(\mathbf{p}) = \frac{||t_z \mathbf{p}_w - \mathbf{K} \mathbf{t}||_2}{||\mathbf{p} - \mathbf{p}_w||_2},$$
where $\mathbf{p}_w = \frac{\mathbf{A}' \mathbf{p}'}{\mathbf{a}'_3^T \mathbf{p}'}$ and $\mathbf{A}' = \mathbf{K} \mathbf{R} \mathbf{K}^{-1}.$
(4)

2. Derivation of error metrics

Recall that in Section 5 of our main manuscript we define five different deth error metrics based the on scale-invariant RMSE (si-RMSE). Here we provide definitions of each error metric. Note that we can use similar algebraic manipulations to those proposed in [3] to evaluate all terms in time linear in the number of pixels.

As in the main paper, we denote with \hat{D} the predicted depth, and denote with D_{gt} the ground truth depth. We define $R(\mathbf{p}) = \log \hat{D}(\mathbf{p}) - \log D_{gt}(\mathbf{p})$, i.e., the difference between computed and ground truth log-depth. We also denote human regions as \mathcal{H} (with N_h valid pixels), non-human (environment) regions as \mathcal{E} (with N_e valid pixels), and the full image region as $I = \mathcal{H} \cup \mathcal{E}$ (with $N = N_e + N_h$ valid pixels).

Our error metrics are defined as follows:

si-full measures the si-RMSE between all pairs of pixels, giving the overall accuracy across the entire image:

$$\mathbf{si-full} = \frac{1}{N^2} \sum_{\mathbf{p} \in I} \sum_{\mathbf{q} \in I} \left(R(\mathbf{p}) - R(\mathbf{q}) \right)^2$$
(5)

$$= \frac{1}{N^2} \sum_{\mathbf{p} \in I} \sum_{\mathbf{q} \in I} R(\mathbf{p})^2 + R(\mathbf{q})^2 - 2R(\mathbf{p})R(\mathbf{q})$$
(6)

$$=\frac{2}{N^2}\left(N\sum_{\mathbf{p}\in I}R(\mathbf{p})^2-\sum_{\mathbf{p}\in I}R(\mathbf{p})\sum_{\mathbf{q}\in I}R(\mathbf{q})\right)$$
(7)

$$= \frac{2}{N} \sum_{\mathbf{p} \in I} R(\mathbf{p})^2 - \frac{2}{N^2} \left(\sum_{\mathbf{p} \in I} R(\mathbf{p}) \right)^2$$
(8)

si-env measures pairs of pixels in non-human regions \mathcal{E} thus computing the accuracy of the depth in the environment:

$$\mathbf{si\text{-}env} = \frac{1}{N_e^2} \sum_{\mathbf{p} \in \mathcal{E}} \sum_{\mathbf{q} \in \mathcal{E}} \left(R(\mathbf{p}) - R(\mathbf{q}) \right)^2 \tag{9}$$

$$= \frac{2}{N_e^2} \left(N_e \sum_{\mathbf{p} \in \mathcal{E}} R(\mathbf{p})^2 - \sum_{\mathbf{p} \in \mathcal{E}} R(\mathbf{p}) \sum_{\mathbf{q} \in \mathcal{E}} R(\mathbf{q}) \right)$$
(10)

si-hum measures pairs where one pixel lies in the human region \mathcal{H} and one lies anywhere in the image, thus computing overall depth accuracy for the people in the scene:

$$\mathbf{si-hum} = \frac{1}{NN_h} \sum_{\mathbf{p} \in \mathcal{H}} \sum_{\mathbf{q} \in I} R(\mathbf{p})^2 + R(\mathbf{q})^2 - 2R(\mathbf{p})R(\mathbf{q})$$
(11)

$$= \frac{1}{NN_h} \left(N \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p})^2 + N_h \sum_{\mathbf{q} \in I} R(\mathbf{q})^2 - 2 \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p}) \sum_{\mathbf{q} \in I} R(\mathbf{q}) \right)$$
(12)

si-hum can further be divided into the sum of two error measures: **si-intra** measures si-RMSE within \mathcal{H} , or human accuracy independent of the environment:

$$\mathbf{si\text{-intra}} = \frac{1}{N_h^2} \sum_{\mathbf{p} \in \mathcal{H}} \sum_{\mathbf{q} \in \mathcal{H}} \left(R(\mathbf{p}) - R(\mathbf{q}) \right)^2 \tag{13}$$

$$= \frac{2}{N_h^2} \left(N_h \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p})^2 - \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p}) \sum_{\mathbf{q} \in \mathcal{H}} R(\mathbf{q}) \right)$$
(14)

Figure 1: Network Architecture. Each block with a different color (id) in (a) indicates a convolutional layer. The block labeled H indicates a 3×3 convolutional layer and all other blocks are implemented as a variant of an Inception module [4], as shown in (b). Parameters for each type of layer are shown in (c). We use bilinear interpolation to upsample features in the network. Figures modified from Chen *et al.* [1].

si-inter measures si-RMSE between pixels in \mathcal{H} and in \mathcal{E} , or human accuracy w.r.t. the environment:

$$\mathbf{si-inter} = \frac{1}{N_e N_h} \sum_{\mathbf{p} \in \mathcal{H}} \sum_{\mathbf{q} \in \mathcal{E}} R(\mathbf{p})^2 + R(\mathbf{q})^2 - 2R(\mathbf{p})R(\mathbf{q})$$
(15)

$$= \frac{1}{N_e N_h} \left(N_e \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p})^2 + N_h \sum_{\mathbf{q} \in \mathcal{E}} R(\mathbf{q})^2 - 2 \sum_{\mathbf{p} \in \mathcal{H}} R(\mathbf{p}) \sum_{\mathbf{q} \in \mathcal{E}} R(\mathbf{q}) \right).$$
(16)

3. Network Architecture

Our network architecture is a variant of the hourglass network proposed by Chen*et al.* [1], and is shown in Figure 1. Specifically, our network has a standard encoder and decoder U-Net structure, with matching input and output resolution, consisting of approximately 5M parameters. In addition, an Inception module [4] is used in each convolutional layer of the network. We replaced the nearest-neighbor upsampling layers by bilinear upsampling layers, which we found produced sharper depth maps while slightly improving overall accuracy.

4. Instructions on running SfM/MVS on MC dataset.

To aid in reproducing our results, we refer readers to the following URL for detailed instructions for running SfM and MVS on our MannequinChallenge dataset:

https://docs.google.com/document/d/11WOcbLIeGGVVpjkGiMaq0zRVZvaBJnewRUPN2mdAD_A/edit? usp=sharing

References

- [1] W. Chen, Z. Fu, D. Yang, and J. Deng. Single-image depth perception in the wild. In *Neural Information Processing Systems*, pages 730–738, 2016.
- [2] M. Irani and P. Anandan. Parallax geometry of pairs of points for 3D scene analysis. In *Proc. European Conf. on Computer Vision* (ECCV), pages 17–30. Springer, 1996.
- [3] Z. Li and N. Snavely. Learning Intrinsic Image Decomposition from Watching the World. In *Proc. Computer Vision and Pattern Recognition (CVPR)*, 2018.
- [4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *Proc. Computer Vision and Pattern Recognition (CVPR)*, 2015.