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Learning the Depths of Moving People by
Watching Frozen People

Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, William T. Freeman

Abstract—We present a method for predicting dense depth in scenarios where both a monocular camera and people in the scene are
freely moving (right of Figure 1). Existing methods for recovering depth for dynamic, non-rigid objects from monocular video impose
strong assumptions on the objects’ motion and may only recover sparse depth. In this paper, we take a data-driven approach and learn
human depth priors from a new source of data: thousands of Internet videos of people imitating mannequins, i.e., freezing in diverse,
natural poses, while a hand-held camera tours the scene (left of Figure 1). Because people are stationary, geometric constraints hold,
thus training data can be generated using multi-view stereo reconstruction. At inference time, our method uses motion parallax cues from
the static areas of the scenes to guide the depth prediction. We evaluate our method on real-world sequences of complex human actions
captured by a moving hand-held camera, show improvement over state-of-the-art monocular depth prediction methods, and demonstrate
various 3D effects produced using our predicted depth.

Index Terms—Depth Prediction, Mannequin Challenge, Dynamic Scene Reconstruction
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1 INTRODUCTION

Ahand-held camera capturing video of a dynamic scene is a
common scenario. Recovering dense geometry in this case is

a challenging task: moving objects violate the epipolar constraint
commonly used in 3D vision (Figure 2), and are often treated as
noise or outliers in existing structure-from-motion (SfM) and multi-
view stereo (MVS) methods. Human depth perception, however, is
not easily fooled by object motion—rather, we maintain a feasible
interpretation of the objects’ geometry and depth ordering even if
both the observer and the objects are moving, and even when the
scene is observed with just one eye [15]. In this work, we take a
step towards achieving this ability computationally.

We focus on the task of predicting accurate, dense depth from
ordinary videos where both the camera and people in the scene are
naturally moving. We focus on humans for two reasons: i) in many
application areas, such as augmented reality, humans constitute the
salient objects in the scene, and ii) human motion is articulated and
difficult to model. By taking a data-driven approach, we avoid the
need to explicitly impose assumptions on the shape or deformation
of people, but instead learn these priors from data.

Where do we get data to train such a method? Generating high-
quality synthetic data where both the camera and the people in
the scene are naturally moving is very challenging. One approach
would be to record real scenes with an RGBD sensor (e.g., a
Microsoft Kinect), but such data is typically limited to indoor
environments and requires significant manual work to capture and
process. In addition, if such a dataset is captured in the lab, a model
trained on it may have difficulty generalizing to real scenes. It is
also difficult to gather a diverse collection of people with diverse
poses at scale.

Instead, we derive data from a surprising source: YouTube
videos in which people imitate mannequins, i.e., freeze in elaborate,
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natural poses, while a hand-held camera tours the scene (Figure 3).
These videos comprise our new MannequinChallenge (MC) dataset,
which we have released for the research community [25]. Because
the entire scene in such videos is stationary—including the people—
we can accurately estimate camera poses and depth using modern
SfM and MVS algorithms, and then use this derived 3D data as
supervision for training a model to predict depth for moving scenes.

In particular, we design and train a deep neural network that
takes an input RGB image, a mask indicating human regions, and
an initial depth defined for the static environment (i.e., the non-
human regions), and outputs a dense depth map over the entire
image—both the environment and the people. Note that the initial
environmental depth is computed using motion parallax between
two video frames, providing the network with information not
available from a single frame. Once trained, our model can handle
natural videos with arbitrary camera and human motion.

We demonstrate our method on a variety of real-world Internet
videos shot with a hand-held camera and depicting complex human
actions such as walking, running, and dancing. Our model predicts
depth with higher accuracy than state-of-the-art monocular depth
prediction and motion stereo methods. We further show how
our predicted depth maps can be used to produce various 3D
effects such as synthetic depth-of-field, depth-aware inpainting, and
insertion of virtual objects into 3D scenes with correct handling of
occlusion.

In summary, our contributions are: i) a new source of data for
depth prediction consisting of a large number of Internet videos in
which the camera moves around people “frozen” in natural poses,
along with a methodology for generating accurate depth maps and
camera poses; and ii) a deep-network-based model that makes use
of motion parallax cues from video sequences, and that is designed
and trained to predict dense depth maps in the challenging case of
simultaneous camera motion and complex human motion.

2 RELATED WORK

Learning-based depth prediction. Numerous algorithms, based
on both supervised and unsupervised learning methods, have
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Fig. 1: Our model predicts dense depth when both an ordinary camera and people in the scene are freely moving (right). We train
our model on our new MannequinChallenge dataset—a collection of Internet videos of people imitating mannequins, i.e., freezing in
diverse, natural poses, while a camera tours the scene (left). Because people are stationary, geometric constraints hold; this allows us
to use multi-view stereo to estimate depth which serves as supervision during training. In all figures, we use inverse depth maps for
visualization purposes, and refer to them as depth maps.

recently been proposed for predicting dense depth from a single
RGB image [5], [8], [9], [10], [23], [26], [28], [41], [50], [56],
[60], [63]. However, because these methods use a single RGB
image, they ignore useful motion parallax cues present in video
sequences. Some recent learning-based methods also consider
multiple images for depth estimation, either assuming known
camera poses [16], [58] or simultaneously predicting camera poses
along with depth [48], [62]. However, these methods assume that
the captured scenes are completely static. They are not designed
to estimate depth for dynamic objects, which is the focus of our
work.

Depth estimation for dynamic scenes. Depth information cap-
tured from RGBD sensors or stereo cameras has been widely used
for 3D modeling of dynamic scenes [1], [2], [7], [18], [20], [32],
[38], [51], [59], [66]. However, only a few methods attempt to
estimate depth from a monocular camera. Several methods have
sought to reconstruct sparse geometry for dynamic scenes using
either a single monocular camera [34], [44], [61], or multiple
unsynchronized cameras [49]. Russell et al. [39] and Ranftl et
al. [36] suggest motion/object segmentation–based algorithms to
decompose a dynamic scene into piecewise rigid parts before
inferring depth ordering. However, these methods impose strong
assumptions about object motion that can be violated by articulated
human motion. More recently, Rematas et al. [37] predict depth
for moving soccer players using synthetic training data from FIFA
video games. However, their method is limited to soccer players,
and cannot handle general people in the wild.

RGBD datasets for learning depth. There are a number of RGBD
datasets of indoor scenes, captured using depth sensors [4], [6],
[43], [55] or rendered from synthetic data [45]. However, none
of these datasets provide depth supervision for moving people
in natural environments. In particular, several action recognition
methods use depth sensors to capture human actions [29], [33],
[42], [65], but most of these use a static camera and provide
only a limited number of indoor scenes. REFRESH [27] is a
recent semi-synthetic scene flow dataset created by overlaying
animated people on NYUv2 images. Here, too, the data is limited
to interior scenes and consists of synthetic humans placed in
unrealistic configurations with respect to their surroundings. The
resulting trained models thus have limited ability to generalize to
real scenarios.
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Fig. 2: Traditional stereo vs. our setup. Left: a person is observed
at the same time instant from two different views. The 3D position
of points can be computed using triangulation. Right: when both
the camera and the objects in the scene are moving, triangulation
is no longer possible since the epipolar constraint does not apply.

Human shape and pose prediction. Recovery of a posed 3D
human mesh from a single RGB image has attracted significant
attention [3], [11], [21], [24], [30], [35]. Recent methods achieve
impressive results on natural images spanning a variety of poses,
some of which can also model fine details such as hair and
clothing [12], [57], [57]. However, such approaches do not model
geometric relations between the people and the static parts of the
scenes. Finally, many of these methods rely on correctly detecting
human keypoints, requiring most of the body to be visible in each
video frame.

3 THE MANNEQUINCHALLENGE DATASET

The Mannequin Challenge [52] is a popular video trend in which
people freeze in place—often in interesting poses—while the
camera operator moves around the scene filming them. Thousands
of such videos have been created and uploaded to YouTube since
late 2016. These videos comprise our new MannequinChallenge
(MC) Dataset [25], which spans a wide range of scenes with people
of different ages, naturally posing in different group configurations



Fig. 3: Sample images from Mannequin Challenge videos. Each image is a frame from a video sequence in which the camera is
moving but the humans are all static. The videos span a variety of natural scenes, poses, and configurations of people.

(see Figure 3). To the extent that people succeed in staying still
during the videos, we can assume the scenes are static and obtain
accurate camera poses and depth information by processing them
with SfM and MVS algorithms. However, recovering accurate
geometry from such raw Internet videos is challenging, and requires
careful filtering of noisy video clips and individual frames in each
clip. After processing, we obtain around 2,000 candidate videos
from which we derive 4,690 sequences comprised of a total of
more than 170K valid image-depth pairs.

We now describe in detail how we process the raw videos and
derive our training data.

Estimating camera poses. Following a similar approach to
Zhou et al. [64], we use ORB-SLAM2 [31] to identify trackable
sequences in each video and to estimate an initial camera pose for
each frame. At this stage, we process a lower-resolution version of
the video for efficiency, and set the field of view to 60 degrees (a
typical value for modern cell-phone cameras). We then reprocess
each sequence at a higher resolution using a visual SfM system [40],
which refines the initial camera poses and intrinsic parameters. This
method extracts and matches features across frames in the videos,
then performs a global bundle adjustment optimization. Finally,
sequences with non-smooth camera motion are removed using the
technique of Zhou et al. [64], as we observe that such sequences
often have erroneous camera poses.

Computing dense depth with MVS. Once the camera poses for
each clip are estimated, we then reconstruct each scene’s dense
geometry. In particular, we recover per-frame dense depth maps
using COLMAP, a state-of-the-art MVS system [41].

Because our data consists of challenging Internet videos that
exhibit camera motion blur, shadows, reflections, etc., the raw depth
maps estimated by MVS are often too noisy for use in training
a model. We address this issue with a careful depth cleaning
procedure. We first filter outlier depths using the depth refinement
method proposed by Li and Snavely [26]. We further remove
erroneous depth values by considering the consistency between
the MVS depth and the depth obtained from motion parallax
between pairs of frames. Specifically, for each frame, we compute
a normalized error ∆(p) for every valid pixel p:

∆(p) =
|DMVS(p)−Dpp(p)|
DMVS(p) +Dpp(p)

(1)

where DMVS is the depth map obtained by MVS and Dpp is
the depth map computed from two-frame motion parallax (see
Section 4.1). Depth values for which ∆(p) > δ are removed,
where we empirically set δ = 0.2.

(a) Image (b) Raw DMVS (c) Cleaned DMVS

Fig. 4: Effect of depth cleaning. (a-b) Raw MVS depth maps,
DMVS, may contain errors and outliers, especially in untextured
regions (see regions circled in yellow). (c) Our depth cleaning
method effectively filters out such erroneous depth values.

Figure 4 shows examples of MVS depth maps before and
after our proposed depth cleaning method. The regions circled in
yellow illustrate that our depth cleaning method can effectively
remove incorrect depth regions. Because these depth maps serve as
supervision during training, this filtering has a significant impact on
our model’s performance, as shown in our experiments (Sec. 5.2).
Figure 7 shows additional examples of our processed sequences
with corresponding estimated MVS depths after cleaning.

Filtering clips. Several factors can make a video clip unsuitable
for training. For example, people may “unfreeze” (start moving) at
some point in the video, or the video may contain synthetic graph-
ical elements in the background. Dynamic objects and synthetic
backgrounds do not obey multi-view geometric constraints and
hence are treated as outliers and filtered out by MVS, potentially
leaving few valid pixels. Therefore, we remove frames where
< 20% of pixels have valid MVS depth after our two-pass cleaning
stage.

Further, we remove frames where the estimated radial distortion
coefficient |k1| > 0.1 (indicative of a fisheye camera) or where
the estimated focal length is ≤ 0.6 or ≥ 1.2 (indicating that the
camera parameters are likely inaccurate). We keep sequences that
are at least 30 frames long, have an aspect ratio of 16:9, and have a
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Fig. 5: Sample frames from clips removed during filtering. (a)
Videos captured with fisheye cameras; (b) videos with synthetic
backgrounds; (c) sequences with truly moving objects (pairs of
frames shown in each column).

width of ≥ 1600 pixels. Finally, we visually inspect the trajectories
and point clouds of the remaining sequences and remove obviously
incorrect reconstructions.

Figure 5 shows examples of images filtered out from the raw
Mannequin Challenge video clips by our data creation pipeline.
These examples include images captured by fisheye cameras, as
well as images with large regions of synthetic background or
moving objects.

After processing, we obtain 4,690 sequences with a total of
more then 170K valid image-depth pairs. We split our MC dataset
into training, validation and testing sets with a 80:3:17 split over
clips.

4 DEPTH PREDICTION MODEL

We train our depth prediction model on our MannequinChallenge
dataset in a supervised manner, i.e., by regressing to the depth
generated by the SfM and MVS pipeline. A key question is how
to structure the input to the network to allow training on frozen
people but inference on moving people.

One possible approach is to regress to depth from a single RGB
image (RGB-to-depth), but this approach disregards geometric
information about the static regions of the scene that is available
by considering more than a single frame. To benefit from such
information, we design a two-frame model that uses depth estimated
from motion parallax for the static, non-human regions of the scene
(Figure 6).

The full input to our network (Figure 7) includes 1) a reference
image Ir, 2) a binary mask M indicating human regions, 3) an
initial depth map Dpp estimated from motion parallax and with
human regions removed, 4) a confidence map C , and 5) an optional
human keypoint map K. We assume known, accurate camera
poses from SfM during both training and inference. In an online
inference-time setting, accurate camera poses can also be obtained
using visual-inertial odometry. Given these inputs, the network
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Fig. 6: System overview. Our model takes as input the RGB frame,
a human segmentation mask, masked depth from motion parallax
(via optical flow and SfM pose), and associated confidence map.
We ask the network to use these inputs to predict depths that match
the ground truth MVS depth.

predicts a full depth map for the entire scene. To match the MVS
depth values, the network must inpaint the depth in human regions,
refine the depth in non-human regions from the estimated Dpp, and
finally make the depth of the entire scene consistent.

Our network architecture is a variant of the hourglass network
proposed by Chen et al. [5]. Specifically, the network has a standard
encoder-decoder U-Net structure, with matching input and output
resolution, consisting of approximately 5M parameters. In addition,
an Inception module variant [47] is used in each convolutional
layer of the network. We replace nearest-neighbor upsampling
layers with bilinear upsampling layers, which we found to produce
sharper depth maps while slightly improving overall accuracy. We
refer readers to the supplementary material and to Chen et al. [5]
for full details of our network architecture. The following sections
describe our model inputs and training losses in detail.

4.1 Depth from motion parallax
Motion parallax between two video frames provides an initial depth
estimate for the static regions of the scene. We assume humans are
dynamic while the rest of the scene is static. Specifically, for each
reference frame, Ir, we select another frame in the video Is, and
estimate an optical flow field from Ir to Is using FlowNet2.0 [17].
Given the estimated flow field and the relative camera poses
between the two views, we then compute an initial depth map
using the Plane-Plus-Parallax (P+P) representation [19], [53].

Note that P+P is typically used to estimate the relative structure
of a scene with respect to a reference plane, either a plane in the
scene or a virtual reference plane. In our case, we use it as means
to cancel out relative camera rotation, as described below.

Formally, suppose we have a relative camera pose relating Is

and Ir consisting of a 3D rotation R ∈ SO(3) and 3D translation
t ∈ R3, with shared intrinsics matrix K. Given an arbitrary planar
surface, Π, the geometric relation between a 2D image point p ∈
Ir and its corresponding point p′ ∈ Is (expressed in homogeneous
coordinates) can be represented as a combination of a planar
component and residual parallax component:

p = pw + µ, (2)

where pw is the 2D image point in Ir that results from warping
p′ ∈ Is by a homography A, which aligns the plane Π between
the two views, and µ is the remaining 2D parallax motion. We



(a) Reference image Ir (b) Human mask M (c) Input depth Dpp (d) Input confidence C (e) MVS depth DMVS

Fig. 7: System inputs and training data. The input to our network consists of: (a) an RGB image, (b) a human mask, (c) a masked
depth map computed from motion parallax w.r.t. a selected source image, and (d) a masked confidence map. Low confidence regions
(dark circles) in the first two rows indicate the vicinity of the camera epipole, where depth from parallax is unreliable and removed. The
network is trained to regress to MVS depth (e).

refer readers to the supplementary material for a detailed definition
of pw and µ.

One can show that when setting the reference plane Π to the
plane at infinity, the expression in Eq. 2 can be written as:

p = pw +
tz(pw −Kt)

Dpp(p)
, (3)

where Dpp(p) is the depth value at p in the coordinate system
of the reference view Ir, and tz is the third component of the
translation vector t. In addition, the homography A in this case is
computed as A = KRK−1.

From Eq. 3, we can estimate the depth Dpp(p) as:

Dpp(p) =
‖tzpw −Kt‖2
‖p− pw‖2

, (4)

We found this computation to be more efficient and robust for
dense depth estimation compared to standard triangulation methods,
which are usually applied to sparse correspondences. See the
supplementary material for a detailed derivation of Eq. 4.

In some cases, such as forward/backward relative camera
motion, ||p− pw||2 will be close to zero in some image regions
(i.e., near the camera epipole), resulting in ill-defined depth values.
We detect and remove these image regions as described in Sec. 4.2.

Keyframe selection. Depth from motion parallax can be ill-
posed if the 2D displacement between two views is small or
well-approximated by a homography (e.g., in the case of pure
camera rotation). To avoid such cases, we use a heuristic to
select a reference frame Ir and a corresponding source keyframe
Is. We want the two views to have significant overlap, while
having sufficient baseline (i.e., distance between camera centers).
In particular, for each Ir, we find the index s of Is as

s = arg max
j

drjorj (5)

where drj is the L2 distance between the camera centers of Ir and
neighboring frame Ij . The term orj is the fraction of co-visible
SfM features in Ir and Ij :

orj =
2|V r

⋂
V j |

|V r|+ |V j |
, (6)

where V j is the set of features visible in Ij . We discard pairs of
frames for which orj < τo, i.e., the fraction of co-visible features
should be larger than a threshold τo (we set τo = 0.6), and limit
the maximum frame interval to 10. We found these view selection
criteria to work well in our experiments.

4.2 Depth confidence
Our data consists of challenging Internet video clips with camera
motion blur, shadows, low lighting, and reflections. In such cases,
optical flow is often noisy [54], leading to uncertainty in the input
depth map Dpp. We thus estimate, and feed to the network, a
confidence map C. This map allows the network to rely more
on the input depth in high-confidence regions, and potentially to
improve its prediction in low-confidence regions. The confidence
value at each pixel p in the non-human regions is defined as:

C(p) = Clr(p)Cep(p)Cpa(p). (7)

where the individual terms are defined as follows.

Flow consistency. The term Clr measures “left-right” consistency
between the forward and backward flow fields. Specifically, we
denote forward flow from Ir to Is as ffwd, and backward flow from
Is to Ir as fbwd. Clr is then defined as:

Clr(p) = max
(
0, 1− r(p)2/σ̄2

)
(8)

where r(p) = ‖ffwd(p) + fbwd(p
′)‖2 is the forward-backward

optical flow warping error, and σ̄ is a tolerance parameter. For



perfectly consistent forward and backward flows Clr = 1, while
Clr =0 when the error is greater than σ̄ pixels (we set σ̄ = 1px in
our experiments).

Geometric consistency. The term Cep measures how well the flow
field complies with the epipolar constraint between the views [13].
Cep gives low confidence to pixels where the flow field and the
epipolar constraint disagree:

Cep(p) = max
(
0, 1− (γ(p)/γ̄)2

)
(9)

where γ̄ controls the epipolar distance tolerance (we set γ̄ = 2px
in our experiments), and the geometric epipolar distance γ(p) is
defined as:

γ(p) =
|p′TFp|√

(Fp)2x + (Fp)2y

(10)

where F = K−T [t]×RK−1 is the fundamental matrix relating
the two views, and (Fp)x and (Fp)y are the first and second
elements of Fp, respectively.

Parallax confidence. The term Cpa assigns low confidence to
pixels for which the parallax between the views is small [41]:

Cpa(p) = 1−
(

min(β̄, β(p))− β̄
β̄

)2

(11)

where

β(p) = cos−1
(

v(p)v(p′)

‖v(p)‖2‖v(p′)‖2

)
(12)

is the angle between the camera rays meeting at pixel p, and
v(p) = K−1p and v(p′) = K−1p′ are viewpoint direction
vectors at p in Ir and p′ in Is respectively. β̄ is the angle tolerance
(we use β̄ = 1° in our experiments).

Figure 7(d) shows examples of computed confidence maps.
Note that human regions as well as regions for which the confidence
C(p) < 0.25 are masked out.

4.3 Keypoints
We optionally use human keypoints as an additional input to the
network, providing the network with explicit information about
the poses of the people featured. In particular, we apply the Mask-
RCNN [14] human keypoint detection algorithm to each frames.
This algorithm detects, for each person, a set of keypoints on salient
points such as joint locations. We encode these detections as an
image for use as a network input by simply setting the image pixel
value at each keypoint location to the corresponding keypoint index
(normalized to lie between 0 and 1), and the rest of the pixels to
zero. Figure 8 shows examples of human keypoints predicted by
Mask-RCNN. We show that adding keypoints as an input can boost
depth prediction performance for people, as shown in Tables 1 and
2.

4.4 Losses
We train our network to regress to depth maps computed by our
proposed data pipeline. Because the estimated depth values from
SfM and MVS have an arbitrary scale, we use a scale-invariant
depth regression loss. That is, our loss is computed on log-space
depth values. Our loss function consists primarily of three terms:

Lsi = LMSE + α1Lgrad + α2(Lsm1 + Lsm2). (13)

Fig. 8: Examples of keypoint images. The top row shows
examples of input images and the bottom row shows corresponding
detected human keypoint images, where different colors indicating
different joints. We perform morphological dilation to the keypoint
maps to make each keypoint location more visible.

We compute our losses with respect to the reference image
Ir. To simplify notations, we remove the superscript r in the loss
equations.
Scale-invariant MSE. LMSE denotes the scale-invariant mean
square error (MSE) adopted from [8]. This loss term computes the
squared, log-space difference in depth between two pixels in the
prediction and the same two pixels in the ground truth, averaged
over all pairs of valid pixels. That is, it penalizes differences in the
depth ratio between any two pixels in the prediction and the ground
truth. Further, this loss can be computed in linear time in terms of
the number of pixels, as derived in the supplementary material:

LMSE =
1

2N2

∑
p∈I

∑
q∈I

(R(p)−R(q))
2 (14)

=
1

N

∑
p∈I

R(p)2 − 1

N2

∑
p∈I

R(p)

2

(15)

where R(p) = log D̂(p) − logDgt(p), and D̂ and and Dgt

denote the predicted and ground truth depth, respectively.

Multi-scale gradient consistency term. To improve depth predic-
tions, we use a multi-scale gradient consistency term to encourage
smoother gradient changes and sharper depth discontinuities in the
predicted depth images [26]:

Lgrad =
S−1∑
s=0

1

Ns

∑
p∈Is

(|∇xRs(p)|+ |∇yRs(p)|) (16)

where the subscript s on Rs and Is indicates that images are
computed at scale s, and Ns denotes the number of valid pixel at
scale s.

Multi-scale edge-aware smoothness terms. To encourage smooth
interpolation of depth in texture-less regions where MVS fails to
recover depth, we add smoothness terms at multiple scales based
on first- and second-order image derivatives [50], and smoothness
weight is modulated by the distance to neighborhood pixels:

Lsm1 =
S−1∑
s=0

1

Ns2s

∑
p∈Is

exp(−|∇Is(p)|)|∇ log D̂s(p)| (17)

Lsm2 =
S−1∑
s=0

1

Ns2s

∑
p∈Is

exp(−|∇2Is(p)|)|∇2 log D̂s(p)|

(18)



For the Lgrad, Lsm1 and Lsm2 terms, we create S = 5-
scale image pyramids for both the predicted and ground truth
depth images, using nearest-neighbor down-sampling, since we
find, compared with bilinear interpolation, nearest-neighbor down-
sampling leads to much sharper depth prediction.

5 RESULTS

We test our method quantitatively and qualitatively and compare it
with several state-of-the-art single-view and motion-based depth
prediction algorithms. We show additional qualitative results on
challenging Internet videos with complex human motion and
natural camera motion, and demonstrate how our predicted depth
maps can be used for several visual effects.

Implementation details. We use FlowNet2.0 [17] to estimate
optical flow since it handles large displacements well and preserves
sharp motion discontinuities. We use Mask-RCNN [14] to generate
human masks and human keypoints. The predicted masks some-
times have errors and miss small parts of people, so we apply a
morphological dilation operation to the binary human masks to
ensure that the masks are conservative and include all the human
regions. When keypoints are used, we normalize their values to
between 0 and 1 before feeding them to the network.

Our network predicts log depth at both the training and
inference stages. During training, we randomly normalize the
input log-depth before feeding it to the network by subtracting a
value sampled from between the 40th and 60th percentile of valid
input logDpp. During inference, we normalize input log-depth by
subtracting the median of logDpp. Additionally, during training,
we randomly zero out the initial input depth and confidence (with
probability 0.1) to address the potential situation where input depth
is unavailable (e.g., camera is nearly static or estimated optical
flow is completely incorrect) during inference. When using human
keypoints as input, we also use the depth from motion parallax Dpp

with high confidence (Clr > 0, Cep > 0 and Cpa > 0.5) at these
locations as ground truth if MVS depth DMVS is not available.

In our experiments, we set hyperparameters in our loss terms
α1 = 0.5, α2 = 0.05 based on the validation set. We train our
networks for 20 epochs from scratch using the Adam [22] optimizer
with initial learning rate of 0.0004. We halve the learning rate every
8 epochs. During training, we downsample all the images to a
resolution of 532×299, use a mini-batch size of 16, and perform
data augmentation though random flips and central crops so that
input image resolution to the networks is 512×288.

Error metrics. We measure error using scale-invariant RMSE
(si-RMSE), equivalent to

√
LMSE, described in Section 4.4. We

evaluate si-RMSE on five different regions: 1) si-full measures the
error between all pairs of pixels, giving the overall accuracy across
the entire image; 2) si-env measures pairs of pixels in non-human
regions E , providing depth accuracy of the environment; and 3)
si-hum measures pairs where at least one pixel lies in the human
region H, providing depth accuracy for people. si-hum can further
be divided into two error measures: 4) si-intra measures si-RMSE
within H, or human accuracy independent of the environment; and
5) si-inter measures si-RMSE between pixels in H and in E , or
human accuracy w.r.t. the environment. We include derivations in
the supplementary material.

5.1 Evaluation on the MC test set
We evaluated our method on our MC test set, which consists of
more than 29K images taken from 756 video clips. Processed MVS

Network inputs si-full si-env si-hum si-intra si-inter

I. I 0.333 0.338 0.317 0.264 0.384
II. IFCM 0.330 0.349 0.312 0.260 0.381
III. IDppM 0.255 0.229 0.264 0.243 0.285
IV. IDppCM 0.232 0.188 0.237 0.221 0.268
V. IDppCMK 0.227 0.189 0.230 0.212 0.263

Unmasked Dpp (oracle) 0.202 0.206 0.200 0.192 0.213

TABLE 1: Quantitative comparisons on the MC test set.
Different input configurations of our model: (I) single image;
(II) optical flow masked in the human region (F ), confidence and
human mask; (III) masked input depth, human mask; and (IV)
additional confidence; in (V), we also input human keypoints. The
last row indicates the error for the depth estimated from motion
parallax between two frames in all image regions (human and
non-human); this serves as an oracle and can only be measured if
the entire scene is static. Lower is better for all metrics.

depth values DMVS obtained by our pipeline (see Section 3) are
considered as ground truth.

To quantify the importance of each component of the model’s
input, we compare the performance of several models, each trained
on our MC dataset with a different input configuration. The two
main configurations are: (i) a single-view model (input is RGB
image) and (ii) our full two-frame model, where the input includes
a reference image, an initial masked depth map Dpp, a confidence
map C, and a human mask M . We also perform ablation studies
by replacing the input depth with optical flow F , removing C from
the input, and adding the human keypoint map K .

Quantitative evaluations are shown in Table 1. By comparing
rows (I), (III) and (IV), it is clear that adding the initial depth of the
environment as well as the confidence map significantly improves
the performance for both human and non-human regions. Adding
human keypoint locations to the network input further improves
performance.

Note that if we input an optical flow field to the network instead
of depth (II), the performance is only on par with the single-view
method. The mapping from 2D optical flow to depth depends on
the relative camera poses, which are not provided to the network.
This result indicates that the network is unable to implicitly learn
relative poses and extract depth information.

Finally, we report the errors for full (unmasked) depth maps
computed from motion parallax between two frames (last row of
Table. 1). Note that these depth maps can be only computed if the
entire scene, including people, is static (thus, this baseline serves
as an oracle and cannot be used at test time). As can be seen from
the second column (si-env), our model leads to 20% improvement
compared to this baseline for non-human regions, which suggests
that our model refines the initial input depth (Dpp), rather than just
copying it. In human regions, where our model has no input depth
information, our performance is only 15% below that of depth from
motion parallax (si-hum).

Figure 9 shows qualitative comparisons between our single-
view model (I) and our full model (IDppCMK). Our full model
results are more accurate in both human regions (first column)
and non-human regions (second column). In addition, the depth
relationships between people and their surroundings are improved
in all examples.



Fig. 9: Qualitative results on the MC test set. From top to bottom: reference images and their corresponding MVS depth (pseudo
ground truth); our depth predictions using: our single view model (third row) and our two-frame model (forth row). The additional
network inputs give improved performance in both human and non-human regions.

Methods Dataset two-view? si-full si-env si-hum si-intra si-inter RMSE Rel

Russell et al. [39] - Yes 2.146 2.021 2.207 2.206 2.093 2.520 0.772
DeMoN [48] RGBD+MVS Yes 0.338 0.302 0.360 0.293 0.384 0.866 0.220
Chen et al. [5] NYU+DIW No 0.441 0.398 0.458 0.408 0.470 1.004 0.262
Laina et al. [23] NYU No 0.358 0.356 0.349 0.270 0.377 0.947 0.223
Xu et al. [56] NYU No 0.427 0.419 0.411 0.302 0.451 1.085 0.274
Fu et al. [9] NYU No 0.351 0.357 0.334 0.257 0.360 0.925 0.194

I MC No 0.318 0.334 0.294 0.227 0.319 0.840 0.204
IFCM MC Yes 0.316 0.330 0.302 0.228 0.323 0.843 0.206
IDppM MC Yes 0.246 0.225 0.260 0.233 0.273 0.635 0.136
IDppCM (raw depth) MC Yes 0.272 0.238 0.293 0.258 0.282 0.688 0.147
IDppCM MC Yes 0.232 0.203 0.252 0.224 0.262 0.570 0.129
IDppCMK MC Yes 0.221 0.195 0.238 0.215 0.247 0.541 0.125

TABLE 2: Results on the TUM RGBD dataset. Different si-RMSE metrics as well as standard RMSE and relative error (Rel) are
reported. We evaluate our models (light gray background) under different input configurations, as described in Table 1. Raw depth
indicates the model is trained using raw MVS depth predictions as supervision, without our depth cleaning method. A dataset denoted as
‘-’ indicates that the method is not learning-based. Lower is better for all error metrics.

5.2 Evaluation on the TUM RGBD dataset
We also evaluate on a subset of the TUM RGBD dataset [46],
which contains indoor scenes featuring people performing complex
actions, captured from different camera poses. Sample images from
this dataset are shown in Figure 10(a-b).

To run our model, we first estimate camera poses using ORB-
SLAM2, because we found that estimates from ORB-SLAM2 were
better synchronized with the RGB images compared to the ground
truth poses provided with the TUM dataset. In some cases, due
to low image quality and motion blur, the estimated camera poses
can be incorrect. We manually filter such failures by inspecting
the camera trajectory and point cloud. In total, we obtain 11
valid image sequences with 1,815 images in total for evaluation.
We downsample these images to 512×384 resolution in order to
preserve their original aspect ratio (our model is fully convolutional
and thus can be applied to different image resolutions at test time).

We compare our depth predictions (using our MC trained
models) with several state-of-the-art monocular depth prediction
methods trained on the indoor NYUv2 [9], [23], [56] and Depth in
the Wild (DIW) datasets [5], as well as with a recent two-frame
stereo model DeMoN [48], which assumes a static scene. We also
compare with Video-Popup [39], which deals with dynamic scenes.
We use the same image pairs that were used for computing Dpp as
inputs to DeMoN and Video-Popup.

Quantitative comparisons are shown in Table 2, where we
report five different scale-invariant error measures as well as
the standard RMSE metric and relative error; these last two are
computed by applying a single scaling factor that best aligns
the predicted and ground-truth depths in the least-squares sense.
Our single-view model already outperforms the other single-view
models, demonstrating the benefit of the MC dataset for training.
Note that VideoPopup [39] failed to produce meaningful results
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Fig. 10: Qualitative comparisons on the TUM RGBD dataset. (a) Reference images, (b) source images (used to compute our initial
depth input), (c) ground truth sensor depth, (d) results of the single-view depth prediction method DORN [9], (e) result of the two-frame
motion stereo method DeMoN [48], (f-g) depth predictions from our single view and two-frame models, respectively.

due to the challenging camera and object motion present in the
data. Our full model, by making use of the initial (masked) depth
map, significantly improves performance for all error measures.
Consistent with our MC test set results, when we use optical flow
as input (instead of the initial depth map) the performance is only
slightly better than the single-view network. Finally, we show the
importance of our proposed depth cleaning methods that we apply
to the training data (see Eq. 1). The same model trained using the
raw MVS depth estimates as supervision (“raw depth”) leads to a
drop of about 15% in performance.

Figure 10 shows a qualitative comparison between these
different methods. Our models’ depth predictions (Figure 10(f-
g)) strongly resemble the ground truth and show a high level
of detail, as well as sharp depth discontinuities. This result is
a notable improvement over competing methods, which often
produce significant errors in both the human regions (e.g., legs in
the second row of Figure 10), and the non-human regions (e.g.,
table and ceiling in the last two rows).

5.3 Internet videos of dynamic scenes

We tested our method on challenging Internet videos (downloaded
from YouTube and Shutterstock) that involve simultaneous natural
camera motion and human motion. Our SLAM/SfM pipeline was
used to generate sequences ranging from 5 to 15 seconds with
smooth and accurate camera trajectories, after which we apply our
method to obtain the required network input buffers.

We qualitatively compare our full model (IDppCMK ) with
several recent learning based depth prediction models: DORN [9],
Chen et al. [5], and DeMoN [48]. For fair comparisons, we use
DORN with a model trained on NYUv2 for indoor videos and a
model trained on KITTI for outdoor videos; For Chen et al. [5],
we use the models trained on both NYUv2 and DIW. For all of our
predictions, we use a single model trained from scratch on our MC
dataset.

As illustrated in Figure 11, our depth predictions are signifi-
cantly better than the baseline methods. In particular, DORN [9]
has very limited generalization to Internet videos, and Chen et
al. [5], which is mainly trained on Internet photos, is not able to
capture accurate depth. DeMoN often produces incorrect depth,
especially in human regions, as it designed for static scenes. Our
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Fig. 11: Comparisons on Internet video clips with moving cameras and people. From left to right: (a) reference image, (b) source
image, (c) results of DORN [9], (d) results of Chen et al. [5], (e) results of DeMoN [48], (f) results of our full method.

predicted depth maps capture accurate depth ordering both between
people and other objects in the scene (e.g., between the people
and buildings in the fourth row of Figure 11), and within human
regions (such as the arms and legs of the people in the first three
rows of Figure 11).

Depth-based visual effects. Our depth predictions can be used to
apply a range of depth-based visual effects to video. Figure 12
shows depth-based defocus, insertion of synthetic 3D graphics, as
well as stereo pairs displayed as anaglyph images. In Figure 13, we
show an example of image inpainting by removing nearby humans
using our predicted depths.

The depth estimates are sufficiently stable over time to allow
inpainting from frames elsewhere in the video. To use a frame
for inpainting, we construct a triangle heightfield from the depth
map, texture the heightfield with the video frame, and render
the heightfield from the target frame using the relative camera
transformation. Figure 12 (d, f) shows the results of inpainting
two street scenes. Humans near the camera are removed using the
human mask M , and holes are filled with colors from up to 200
frames later in the video. Some artifacts are visible in areas that
the human mask misses, such as shadows on the ground.

6 DISCUSSION AND CONCLUSION

We demonstrated the power of a learning-based approach for
predicting dense depth for dynamic scenes where a monocular

camera and people are freely moving. We make a new source of
data available for training: a large corpus of Mannequin Challenge
videos from YouTube, in which the camera moves around and
people are “frozen” in natural poses. We showed how to obtain
reliable depth supervision from such noisy data, and demonstrated
that by using motion parallax cues available in a video sequence,
our models can significantly improve over prior state-of-the-art
methods.

Our approach has a number of limitations. First, we assume
known and accurate camera poses, which can be difficult to
compute accurately if moving objects cover most of the scene
or camera motion is close to a pure rotation. Second, our model
can fail to generalize to non-standard human poses, as shown in
the first three rows of Fig. 14. Third, the depths predicted by our
model may be inaccurate for non-human moving regions such as
animals, cars, and shadows, as shown in the last three rows of
Fig. 14. Finally, our approach also uses just two views, rather than
operating on an entire video sequence. This can lead to temporally
inconsistent depth estimates and reconstructions across a video.
Despite these limitations, we hope that our work can guide and
enable further progress in dense reconstruction of dynamic scenes.
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[66] M. Zollhöfer, M. Niessner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al. Real-time non-rigid
reconstruction using an RGB-D camera. ACM Trans. Graphics, 33(4):156,
2014.



Zhengqi Li is a CS Ph.D. Candidate at Cornell
Tech, Cornell University. Prior to that he received
Bachelor of Computer Engineering with High
Distinction at University of Minnesota, Twin Cities.
His research interests include 3D computer vi-
sion, computational photography and inverse
graphics. He is a recipient of the CVPR Best
Paper Hornorable Mention Award in 2019 and
Adobe Research Fellowship Award in 2020.

Tali Dekel is a Senior Research Scientist at
Google, Cambridge, developing algorithms at
the intersection of computer vision and computer
graphics. Before Google, she was a Postdoctoral
Associate at the Computer Science and Artificial
Intelligence Lab (CSAIL) at MIT, working with
Prof. William T. Freeman. Tali completed her Ph.D
studies at the school of electrical engineering,
Tel-Aviv University, Israel, under the supervision
of Prof. Shai Avidan, and Prof. Yael Moses. Her
research interests include computational photog-

raphy, image synthesize, geometry and 3D reconstruction. She is a
recipient of the Rothschild Postdoctoral Fellowship, and The National
Postdoctoral Award for Advancing Women in Science.

Forrester Cole is a software engineer at Google
Research, where he works on combining ma-
chine learning and computer graphics techniques.
He received an A.B. from Harvard in 2002, and
a Ph.D. from Princeton in 2009, both in computer
science. He has previously worked at MIT and
Pixar Animation Studios, and contributed to major
film and game productions.

Richard Tucker is a Software Engineer at
Google Research in New York. His research inter-
ests include machine learning for 3D perception
and view synthesis. He received a PhD in com-
puter science from the University of Cambridge.

Noah Snavely received the B.Sc. degree in com-
puter science from the University of Arizona in
2003, and the Ph.D. degree in computer science
and engineering from the University of Wash-
ington in 2008. He is a researcher at Google
Research, and an associate professor of com-
puter science at Cornell University. He works
in computer graphics and computer vision, with
a particular interest in using vast amounts of
imagery from the Internet to reconstruct and
visualize our world in 3D. He is the recipient of

a Microsoft New Faculty Fellowship, a PECASE, and a SIGGRAPH
Significant New Researcher Award. He is a member of the IEEE.

Ce Liu is a staff research scientist at Google
Research, conducting research in the area of
computer vision, computer graphics and machine
learning. He received his B.E. and M.E. from Ts-
inghua University in 1999 and 2002, respectively,
and received a Ph.D. from MIT Department of
Electrical Engineering and Computer Science
in 2019. He worked at Microsoft Research Asia
from 2002 to 2003, and Microsoft Research New
England from 2009 to 2014. He received the best
student paper award at NIPS 2006 and CVPR

2009, and the best paper award honorable mention at CVPR 2019. He
is a recipient of TPAMI Young Research Award in 2016. He has been
serving as area chairs for CVPR/ICCV/ECCV/NeurIPS, and will serve as
a co-Program Chair for CVPR 2020.

Willam T. Freeman is a staff research scientist
at Google, and the Thomas and Gerd Perkins
Professor of Electrical Engineering and Computer
Science at MIT, a member of the Computer
Science and Artificial Intelligence Laboratory
(CSAIL). He was the Associate Department Head
from 2011 - 2014.

His current research interests include machine
learning applied to computer vision, Bayesian
models of visual perception, and computational
photography. He received outstanding paper

awards at computer vision or machine learning conferences in 1997,
2006, 2009 and 2012, and test-of-time awards for papers from 1990,
1995 and 2005. Previous research topics include steerable filters and
pyramids, orientation histograms, the generic viewpoint assumption, color
constancy, computer vision for computer games, and belief propagation
in networks with loops.


