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Abstract— This paper addresses the problem of autonomous
quadrotor navigation within indoor spaces. In particular, we
focus on the case where a visual map of the area, represented
as a graph of linked images, is constructed offline (from visual
and inertial data collected beforehand) and used to determine
visual paths for the quadrotor to follow. Moreover, during
the actual navigation, the quadrotor employs both the 3+1pt
and the 1+1pt RANSAC to efficiently determine its desired
motion towards the next reference image, for both cases of
sufficient and insufficient baseline (e.g., rotations in place).
Lastly, we introduce an adaptive optical-flow algorithm that can
accurately estimate the quadrotor’s horizontal velocity under
adverse conditions (e.g., when flying over dark, textureless
floors) by progressively using information from more parts of
the images. The speed and robustness of our algorithms are
evaluated experimentally on a commercial quadrotor navigating
in the presence of dynamic obstacles (i.e., people walking), along
lengthy corridors, and through tight corners, as well as across
building floors via poorly-lit staircases.

I. INTRODUCTION AND RELATED WORK

In order for a quadrotor to autonomously navigate, it must
be able to determine its current location and compute a
path towards its destination. One way to solve this problem
indoors is to create, typically offline, a dense 3D map
and use it for both localization and path planning. The
high computational cost and memory requirements of such
an approach, however, limit its applicability to small-size
areas. On the other hand, a building can be described as a
visual graph using images, as well as inertial data, collected
beforehand. Such a representation has many advantages, such
as scalability (no metric global map needs to be constructed)
and ease of implementation (the images can be collected by
a person walking through the building with the quadrotor).
Moreover, visual paths can be easily specified by a user
by selecting the corresponding images along which the
quadrotor needs to navigate, or by simply indicating the start
and end images. The main challenge that such an approach
poses, however, is designing algorithms for fast and reliably
navigating the quadrotor along the visual path despite the
lack of scale in the reference trajectory.

Controlling a robot to reach a specific destination defined
in the image space can be achieved using visual servoing
(VS) [7], [8]. Most VS approaches can be classified into
two categories: (i) Position-based VS (PBVS), where the
control input is computed directly using a relative position,
up to scale, and orientation (pose) estimate; and (ii) Image-
based VS (IBVS), where the control input is determined in
the image domain, while often it is assumed that the depth
to the scene is, at least approximately, constant [7]. Prior
work on VS for quadrotors equipped with a downward-
pointing camera has addressed the problem of landing on

a known target [21], [6] and hovering over an arbitrary tar-
get [4]. Furthermore, for quadrotors equipped with a forward-
pointing camera, [5] classifies the environment into corridors,
stairs, or “other” in order to determine the appropriate turn,
side-ways, or upward motion so that the robot can continue
exploration.

In the context of navigating along a visual path, VS
techniques have been recently applied to aerial vehicles [24],
[11]. In particular, in [24] an extension of the “funnel”-lane
concept of [9] to 3D is presented and applied to controlling
a quadrotor. Specifically, the geometric constraints based on
the image coordinates of the reference features are used
for determining the funnel region within which the robot
should move in order to match the reference image. Then, the
desired motion of the quadrotor is computed as the convex
combination of the heading and height required for staying
within the funnel region and the one the quadrotor had
followed during the training phase. As criterion for switching
to the next reference image, an error measure is defined based
on the root mean square of the difference in the feature’s
pixel coordinates between the reference and the current
image. In [11], the VS method of [12] is extended to the case
of a quadrotor following a visual path comprising a sequence
of keyframe images selected, during the experiment, by a
person. In contrast to 3-view-geometry-based approaches
(e.g., [13] and [16]), [11] uses the PBVS algorithm described
in [8] for controlling the quadrotor. This method does not
require triangulating points but instead, given sufficient base-
line, it uses epipolar geometry for estimating the relative pose
between the current and the reference camera frames.

A key limitation of both [24] and [11] is that they cannot
deal with rotations in place (often required for navigat-
ing through tight spaces), or, for the case of [11], with
translations through areas with only faraway features (e.g.,
featureless corridors). Moreover, in both cases, the quadrotor
followed rather short and fairly simple, in terms of the
motions required, paths comprising a short translation and
a wide turn in [24], or no turn in [11], where the quadrotor
was moving back and forth between two locations connected
via a direct path.

To address these limitations, in our previous work [14],
we introduced a PBVS algorithm that uses both the 5pt1

and the 2pt RANSAC to (i) distinguish between wide- and
short-baseline motions, and (ii) efficiently switch between

1The 5pt RANSAC [25] estimates the relative orientation I1
I2

R and
the unit vector of translation I1 tI2 between two images I1 and I2. The
2pt RANSAC [14] estimates the relative orientation I1

I2
R between two

images, I1 and I2, under the assumption of very small baseline compared to
the depth of the scene.



reference images. Moreover, the resulting algorithm was
able to reliably navigate the quadrotor over a wide range
of motions comprising rotations in place under challeng-
ing conditions (e.g., featureless corridors and areas with
numerous specular reflections). A key limitation of [14],
however, was that the navigation algorithm could only run
at 8 Hz on the quadrotor’s processor. This was primarily
due to the high processing requirements of the 5pt RANSAC
(45 ms per image pair). Moreover, the optical-flow algorithm
used in [14] was sensitive to lighting conditions and floor
texture, which made navigating through not-well-lit regions,
or over low-texture surfaces, challenging. To overcome these
limitations, in this work we extend the approach of [14] in
two ways:

1) We employ the 3+1pt [23], instead of the 5pt,
RANSAC algorithm, which uses the gravity-direction
correspondence between image pairs2 to very effi-
ciently estimate the 5 dof between them. Analogously,
we replace the 2pt with the 1+1pt RANSAC.3 As a
result, we are able to determine the desired motion
80% faster than in [14].

2) We extend the optical-flow algorithm of [18] so as to
gradually acquire and process additional information
from a larger part of the image so as to compute a ro-
bust and accurate estimate of the quadrotor’s horizontal
velocity.

The key advantages of the proposed PBVS algorithm are
as follows: (i) By employing the closed-form solution for
the minimal solver of the 3+1pt, the quadrotor is able to
process visual information very efficiently, and thus navigate
2.5 times faster as compared to [14].4 (ii) Our algorithm
is capable of dealing with a wide range of lighting con-
ditions and environments, (e.g., dark, low-texture floors),
while maintaining a fast operational speed. Lastly, and, in
order to demonstrate the improved efficiency, accuracy, and
robustness of the proposed algorithm as compared to [14],
we have implemented and tested it under adverse lighting
condition, using the Parrot Bebop [2] in areas comprising
lengthy corridors, tight turns, and stairs.

II. QUADROTOR AND OBJECTIVE

The Parrot Bebop quadrotor (see Fig. 1) has an attitude-
stabilization controller, which take as input information from
an observer that processes gyroscope and accelerometer
measurements, from the onboard inertial measurement unit
(IMU), to estimate its roll and pitch angles, yaw-rate, and
thrust. Additionally, it carries a downward-pointing camera to
estimate optical flow, and an ultrasonic sensor to measure the

2The gravity-direction is computed from the IMU, which is transformed to
camera frame of reference by the extrinsic IMU-camera parameters. Those
parameters are estimated using the algorithm in [22].

3In this case, the minimal solver remains the same, but we improve
robustness since the algorithm requires only one, instead of two, point
feature correspondences along with the gravity direction.

4Note also that as compared to the 5pt, the 3+1pt RANSAC requires
fewer (25 versus 17) points for estimating the 5 dof transformation between
two imgaes, thus allowing operation in areas with only few features.

Fig. 1. The Parrot Bebop quadrotor equipped with a 180 deg WFOV
camera, an optical-flow sensor, and an ARM-based processor.

distance to the ground.5 Furthermore, the Bebop has access
to (i) a forward-facing wide field of view (WFOV) camera
(ii) an onboard ARM processors for executing, in real-time,
all image-processing and control algorithms necessary by the
proposed PBVS method.

As mentioned earlier, the objective of this work is to
develop a robust algorithm that will allow the quadrotor
to follow, at relatively high speed, visual paths, defined as
sequences of pre-recorded images.

III. TECHNICAL APPROACH

As in [14], our approach comprises two phases. In the
first (offline) phase, a visual-graph-based representation of
the area of interest is constructed using images collected
by a person walking through it. Then, given a start and an
end pair of images, a feasible visual path is automatically
extracted from the graph along with motion information (path
segments that include significant translational motion or only
rotations in place). In the second (online) phase, our PBVS
algorithm controls the quadrotor to successively minimize the
relative rotation and baseline between the images captured by
its onboard camera and the corresponding reference images
of the visual path. Additionally, and in order to increase
robustness, our navigation approach employs a vocabulary
tree (VT)-based [26] method for relocalizing inside the
previously constructed visual graph when losing track of the
reference image path.

A. Offline phase

1) Map generation: Similar to [14], a person carrying
a quadrotor, walks through the area of interest collecting
images at 15 Hz. Note though that in contrast to [14], we
concurrently compute and save along each image the cor-
responding gravitational direction. Subsequently, we extract
FREAK image points [3] and employ a VT to generate the
visual map which is represented as a visual graph (VG)
whose nodes correspond to the recorded images (see Fig. 2).
An edge between two images signifies that these were
matched by the VT and at least 30 point-correspondences
passed the 3+1pt or 1+1pt RANSAC. Furthermore, we assign
weights to these edges inversely proportional to the number

5Note that despite the availability of metric information from the velocity
estimated based on the optical flow and the distance to the scene, we do
not use it to triangulate features and create a local map as it can be both
unreliable and computationally expensive.



Fig. 2. Offline phase: The area of interest is described as a visual graph (VG) whose nodes correspond to images, while edges link images containing a
sufficient number of common features for reliably visually-servoing between them. In the VG, Is1, Ig denote the start and goal images, respectively, while
Is2, . . . , Is5 signify intermediate goal locations along the quadrotor’s path specified by the user.

of common features (inlier matches) found between linked
images. This choice is justified by the fact that the VG will
be used to determine paths that the quadrotor can reliably
navigate through in the image space towards its destination.

The VG is constructed in a matter of minutes even for large
areas containing tens of thousands of images. Moreover, it
can be easily updated by adding or replacing subsets of
images corresponding to new/altered regions of a building.

2) Path specification: The VG is used as in [14] for
computing paths between the quadrotor’s start and end loca-
tions, possibly via intermediate points. Specifically, consider
the graph shown in Fig. 2. Assume that the quadrotor
knows its current location (e.g., it is provided by the user,
automatically determined using the VT, or saved from the
previous run) corresponding to image node Is. Then, the
user specifies a destination image Ig in the VG and the
reference path is determined automatically by employing
Dijkstra’s algorithm [10]. This process is easily extended to
include intermediate locations (e.g., Ig1 , Ig2 . . . Ign ), by simply
resetting as the start of the next path segment the end image
of the previous one (e.g., Isi+1 = Igi , i = 1 . . .n).

Once the path is extracted from the VG, we prune images
that are very close to each other and only keep the ones
that have substantial translational and/or rotational motion
between them. To do so, we use an iterative process that
starts from the reference image Ir

1 = Is and moves along
the path matching FREAK features using both the 3+1pt
and 1+1pt RANSAC algorithms until it finds the first image,
Is+m, m ≥ 1, that either has more 3+1pt than 1+1pt inliers,
or the relative yaw angle between them is greater than
10 deg. In the first case, we declare that the quadrotor is
in translation, otherwise, in rotation and set Is+m, as the next
reference image Ir

2. The resulting path P = {Ir
1, I

r
2, . . . , I

r
n} is

provided to the quadrotor along with two additional pieces

of information: (i) We specify which images correspond to
rotation-only motion and provide the yaw angle between con-
secutive rotation-only images; (ii) We provide the FREAK
features extracted from each reference image along with their
coordinates and the direction of gravity. The former is useful
in case the quadrotor gets lost (see Section III-B.4), while
the latter is used by the quadrotor for efficiently finding
and matching its next reference image through the process
described hereafter.

B. Online phase

1) System state determination: Firstly, consider the case
of sufficient baseline; we are interested in computing the
desired motion that will bring the quadrotor close to the
reference image Ir

k ∈ P . To do so, we seek to estimate
the quadrotor’s 5 dof with respect to Ir

k by extracting and
matching features between its current, It , and reference, Ir

k ,
images. Specifically, given three pairs of feature matches
between It and Ir

k , we employ the 3+1pt minimal solver
of [23] to compute the 5 dof transformation from It to Ir

k
based on the relation between the gravitational directions of
the two images:

Ir
k g =

Ir
k

It RIt g (1)

and the epipolar constraint for the 3 feature correspondences:

Ir
k bT

f j
bIr

k tIt ×c
Ir
k

It RIt b f j = 0, j = 1 . . .3 (2)

Note, however, that the estimate from (1), (2) is not reliable
when the baseline between It and Ir

k is short. Furthermore, the
appearance-based feature matching between It and Ir

k (i.e.,
the 3+1pt RANSAC’s input), is not always reliable (e.g., due
to adverse lighting conditions and/or occlusions). To address
these challenges, we model our system as a hybrid automaton
H as follows: Definition 1: H = (L ,x,E ), where:
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Fig. 3. Online: Schematic diagram of the steps and transitions between
the different states of the automaton H .

• L is the set of discrete states including:
– `0: wide baseline (nominal condition)
– `1: short baseline (rotation in place is necessary or

reference-image switching)
– `2: lost mode due to, e.g., failure in the appearance-

based feature matching.
• x(t,k) = [It , Ir

k ,r(t,k)] where r(t,k) is the desired motion
for minimizing the relative pose between It and Ir

k .
• E is the set of relations governing transitions between

the states in L = {`0, `1, `2}.
Given H , and in order to complete the reference visual

path P , the system must ideally iterate between two steps
until the last element of P is reached: (i) When in `0, we
compute the motion r and control the quadrotor so as to
bring the system to state `1 (see Section III-B.2); (ii) When
in `1, and if there is no significant rotation between It and Ir

k ,
we switch Ir

k to the next reference image in P (see Section
III-B.3), and the system returns to state `0. In case of external
disturbances, the system may reach state `2. In this case, a
recovery procedure will be executed to attempt to bring the
system back to `0 or `1 (see Section III-B.4).

In order to accurately classify the state of the system
as `0, `1, or `2 based on It and Ir

k , we use the process
summarized in Fig. 3, and define the relations in E =
{e0,e1,e2} in the following 3 steps.

Step 1: We first extract and match FREAK features in
It and Ir

k , and define as S f (It , Ir
k) the set of all feature

correspondences. Note that if the condition for sufficient
feature matches e0 : |S f | ≥ 17, where |S f | is the cardinality
of the set S f , is satisfied then the system proceeds to Step 2
of the current state, else it transitions to state `2 (see Fig. 3).

Step 2: Given the bearing vectors, It b f and Ir
k b f , from both

camera frames, It and Ir
k , to each feature f , we employ the

3+1pt RANSAC to compute the geometric relation (
Ir
k

It R̂, Ir
k t̂It )

between It and Ir
k , as well as the set of features whose

reprojection error [17] is within a threshold ε1 (the error
tolerance for outlier rejection [15]). At this point, we require
that the condition e1 : |S3+1pt | ≥ 17 (i.e., the number of 3+1pt
RANSAC inliers) is satisfied in order to proceed to Step 3;
else the system transitions to state `2 (see Fig. 3).

In Step 3, we distinguish between the states `0 and
`1. Specifically, when the baseline is short (i.e., Ir

k dIt �
It d f ,

Ir
k d f ⇔ Ir

k b f '
Ir
k

It RIt b f ), the 5 dof degenerates into a
3 dof, rotation-only constraint that is satisfied by all the
3+1pt inliers. Our algorithm uses this observation to de-
termine if there is sufficient baseline between the current,
It , and reference, Ir

k , images. In particular, we employ the
1+1pt RANSAC on the features f ∈ S3+1pt to compute the
rotation

Ir
k

It R̆ between two images and determine S1+1pt =

{ f ∈ S3+1pt | 1− Ir
k bT

f
Ir
k

It R̆ It b f < ε2}, which is the subset
of 3+1pt inliers that are also 1+1pt inliers. Lastly, and in
order to compensate for the noise in the measurements and
the randomness of RANSAC, instead of requiring |S1+1pt |=
|S3+1pt |, we employ the condition e2 : |S1+1pt |

|S3+1pt |
> 0.94 to

declare small baseline (i.e., state `1).
Depending on the state of our system (`0, `1, or `2), in

what follows, we describe the process for controlling the
quadrotor.

2) Wide baseline (`0):
a) Improving the motion estimate: In practice, when the

quadrotor navigates through long corridors or open spaces,
S f may contain features at various depths, some of which
(typically the faraway ones) may negatively affect the motion
estimate. Note that such features, satisfy the 1+1pt RANSAC.
To remove them, we define as S′3+1pt = S3+1pt \S1+1pt , run
again the 3+1pt RANSAC on the features f ∈ S′3+1pt , and
use the winning hypothesis to initialize an iterative batch-
least squares algorithm [20] to improve the accuracy of the
estimated desired motion between It and Ir

k .
At this point, note that although the desired motion be-

tween It and Ir
k may comprise 5 dof (3 for the relative roll,

pitch, yaw, and 2 for the unit vector, t, of translation), given
the kinematic and actuation constraints of the quadrotor (e.g.,
it cannot achieve non-zero roll or pitch angle while staying
still), our controller seeks to match the desired motion only
along 3 dof: The tx, ty projection of the desired unit vector,
t, of translation on the horizontal plane,6 and the desired

6Note that since all images were recorded at about the same height, the
z component of the desired motion estimate is rather small after the first
reference image and we subsequently ignore it. Instead, we use the distance
to the ground measurements to maintain a constant altitude flight.



(relative) yaw angle Ir
k ψ̂It . Moreover, and in order to maintain

an almost constant-velocity flight, we scale tx and ty by v0
(the maximum velocity that the optical-flow can measure)
and provide our PID controller described in [14] with the
following desired motion vector:

r =

vd
x

vd
y

ψ̂

=

tx v0
ty v0
Ir
k ψ̂It

 (3)

3) Short baseline (`1): In case of short baseline, we detect
if there is any rotational motion needed to minimize the
relative yaw, Ir

k ψIt , between It , and Ir
k. To do so, we first

improve the rotation matrix estimate,
Ir
k

It R̆, by employing the
least-squares method of [19] on the features f ∈ S1+1pt using
as initial estimate the one from the minimal solver of the
1+1pt RANSAC. After extracting the yaw component, if
|Ir

k ψ̆It | > τ3,7 we send the desired rotation-in-place motion
rT = [0 0 Ir

k ψ̆It ]
T to the controller to minimize the relative

yaw between It , and Ir
k; else, we switch to the next reference

image in the path P .
Alternatively, we can leverage the yaw angle (computed

off-line - see Section III-A.2) between the first and last
rotation-only reference images to speed up the execution
of this path segment. Specifically, the precomputed relative
yaw angle is provided to the controller to perform a “blind”
rotation in place. Once this is complete, the quadrotor queries
the VT to confirm that the last rotation-only reference image
of the current path segment has been reached, or, determine
the remaining rotation between the current image and the
last rotation-only reference image.

4) Lost mode (`2): There are four possible cases that can
cause the quadrotor to get lost:

• It enters a featureless region.
• It enters a region where the result from the FREAK

feature matching between It and Ir
k is unreliable.

• It significantly deviates from its current path, in order
to avoid an obstacle.

• Dynamic obstacles (e.g., people) obstruct its view or
path.

Our recovery method is as follows: While hovering, the
quadrotor queries the VT with It and successively evaluates
among the returned images to find the one that has at least
20 features in common with It that pass the 3+1pt or 1+1pt
RANSAC. If the above search fails for the top 10 images, the
quadrotor switches to a “blind” motion strategy following the
same type of motion as before it was lost (i.e., translation or
rotation based on the last reference image where it computed
good matches) for 0.5 sec and then attempts again to retrieve
a good reference image Ir

best. This iterative process is repeated
for 10 times before declaring that the quadrotor is lost, in
which case, it autonomously lands.

7This threshold depends on the onboard camera’s fov and is selected so as
to ensure a significant overlap (more than 80%) between the current camera
image and the next reference image.

C. Optical Flow

In this section, we describe our extension of the PX4Flow
algorithm [18]. The original algorithm firstb extracts a 64x64
patch in the center of the downward-pointing camera’s
image and computes the optical flow of each of the 25
8x8 pixel blocks within the patch based on the sum of
absolute differences (SAD) with a search area of half the
window size (i.e., 5 pixels in the x, y directions of the
second image). Then, subpixel refinement is applied to obtain
better matching results with half pixel accuracy. Finally, the
algorithm constructs two histograms of pixel displacements
in the x and y directions based on the flow from the 25
blocks and picks the one with the highest voting value as
the optical flow for that frame.
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Fig. 4. The order of patch-selection. The largest (red) block corresponds to
the whole image, while the 9 small blocks denote the 64x64 pixel patches.
The assigned patches show the execution order of the adaptive optical-flow
algorithm

In poor lighting or low-texture conditions, however, the
patch in the center of the image may have less texture, or
the minimum SAD for the chosen pixel may be very large,
leading to erroneous optical flow estimation. To address this
problem, we propose an extension of the PX4Flow algorithm
which can estimate optical flow with displacement up to 5
pixels when considering translational motions.8 In particular,
our algorithm splits the image of size 320x240 into 9 patches
of pixel size 64x64 (see Fig. 4). We begin by computing the
histograms of optical-flow based on the PX4Flow algorithm
for the center patch of the image (i.e., patch 1 in Fig. 4) and
then, if the number of valid pixels,9 among the total of 25
chosen pixel blocks, is less than or equal to 20, we continue
to compute the optical flow, and accumulate histograms, in
the patch order shown in Fig. 4. This process continues
until the number of valid pixels in the histogram is larger
than 20. The reason behind this order of patch-selection is
that the pixels far away from the center have more radial
distortion. Furthermore, as evident from (4), they are affected

8In practice, we can deal with small rotations but the main motion
between consecutive frames needs to be translational.

9For a chosen pixel p, if the sum of horizontal and vertical gradients of
the 4x4 patch centered at p (i.e., textures of the image) is larger than a
threshold τ1 and the minimum SAD value in the search area is less than a
threshold τ2, p is considered to be a valid pixel.



by rotations more than the ones closest to the center:

ẋ =−vx

Z
+

xvz

Z
+ xyωx− (1+ x2)ωy + yωz

ẏ =−
vy

Z
+

yvz

Z
+(1+ y2)ωx− xyωy− xωz

(4)

where x and y are homogeneous coordinates of a pixel p,
ẋ and ẏ are the optical-flow velocities of p, vx, vy and vz
are the linear velocities of the downward-pointing camera,
ωx, ωy and ωz are the angular velocities of the downward-
pointing camera, and Z is the Z coordinate of the 3-D point
to which p corresponds.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for validat-
ing both the extension of PX4FLow algorithm and the ability
of the Bebop to fly through image-defined paths. In the
optical-flow experiment, we show the difference in perfor-
mance between our proposed and the original approach using
data taken in a dark stair case inside Walter library. Next,
we performed experiments with the Parrot Bebop quadrotor
in two scenarios: (i) a 75 m indoor area without stairs
to evaluate the algorithm’s performance under maximum
allowable speed (2.0 m/s). (ii) a 150 m indoor area with the
available of stairs under more conservative maximum speed
(1.2 m/s).

A. System setup

The Bebop carries a MEMS IMU, a downward-pointing
Aptina MT9V117 camera used for optical flow, an ultrasonic
sensor for measuring the distance to the ground, and a
forward-pointing Aptina MT9V002 camera which we use for
visual navigation. All processing is carried onboard Bebop’s
ARM Cortex A9 800 MHz dual-core processor.

B. Optical-flow experiment

We implemented the proposed adaptive optical-flow algo-
rithm using ARM NEON and achieved an average time of
0.948 ms for images of size of 320x240. Thus, for a frame
rate of 60Hz, the total time per second for computing the
optical-flow is approximately 57 ms which is sufficient for
real-time operation.

Fig. 5. Representative consecutive image pairs from the Walter library
stairs. The red circle shows the same corner in the two images with their
pixel coordinates.

Our test dataset of 1000 images was taken from the Bebop
at the Walter library stairs. The approximate motion is shown
as a black dashed line in Fig. 7. We then used both the
PX4Flow and our algorithm, to estimate the quadrotor’s

horizontal velocity between consecutive image pairs. The
path resulting from integrating those velocities over time
is shown in Fig. 7. As evident, our algorithm is able to
give significantly more accurate results compared to the
PX4Flow. In order to better understand where the gain in
performance comes from, we further show the histograms
of the pixel blocks’ displacement (see Fig. 6) resulting from
the image pair shown in Fig. 5. The blue bars in Fig. 6,
which depict histograms from the PX4Flow algorithm, do not
have a distinct flow peak, suggesting inaccurate optical flow
estimation. In contrast, the histograms from our proposed
algorithm, shown as yellow bars, have a clear peak, resulting
from the additional optical-flow information collected from
the extra image blocks used.
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Fig. 6. Histograms of the optical-flow in the x and y directions. The blue
bars depict the histograms from the PX4Flow algorithm. The yellow bars
indicate the histograms from the proposed optical-flow algorithm.
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Fig. 7. The Bebop’s position estimated from the PX4Flow algorithm and
our adaptive optical-flow algorithm.



C. Experiment 1 (within the same floor)

This experiment took place in the Walter Library’s base-
ment which is very similar to the long experiment in [14],
where the quadrotors had to follow a 75 m long path com-
prising translational motion segments through open spaces as
well as rotations in place in order to navigate through narrow
passages. Fig. 8 shows the blueprint of the experimental
area depicting the reference visual path (red bold line), and
snapshots of the quadrotor in flight. During the experiment,
the Bebop was able to complete the reference trajectory in
97 sec, at an average speed of 1.0 m/s.

Fig. 8. Experiment 1: Blueprint of the experimental area, reference (1-6-1),
and snapshots of the Bebop along its paths (1-6).

Table 1 illustrates the difference in performance between
the combination of the 5pt & 2pt in our previous work [14]
and the 3+1pt & 1+1pt in this paper, while Table 2 shows
the execution time on the same Bebop’s processor.

Exp. Length Total time Trans. time Avg. speed
5pt 75 m 240 sec 180 sec 0.4 m/s
3+1pt 75 m 97 sec 73 sec 1.0 m/s

Table 1: Comparison in performance between [14] and the
proposed method.

Impl. Solver RANSAC Freq.
5pt 1.3 ms 45 ms 8 Hz
3+1pt 0.13 ms 5 ms 15 Hz

Table 2: Comparison in execution time on the same processor
between [14] and the proposed method.

As evident, by employing the proposed combination of the
3+1pt and 1+1pt (instead of the 5pt and 2pt) RANSAC, the
quadrotor is able to follow the desired path 2.5 times faster
than [14].

D. Experiment 2 (stairs connecting two floors)

This experiment took place in the Walter Library’s base-
ment and 1st floor which include stairs connecting them.
In addition to the longer trajectory in translation (150 m),
the quadrotor also has to deal with the challenging staircase
area, where the rate of change in the ultrasonic sensor
measurement is high. The main difficulty in this experi-
ment was accurately estimating the optical-flow. Note that
the stairs comprise textureless steps that pose a significant
challenge to the optical-flow algorithm. Furthermore, part of
the stairs (4-7 and 11-14, see Fig. 9) is featureless and quite
dark compared to the rest of the path. Despite the adverse
conditions, the quadrotor was able to successfully navigate
through this path in 250 sec. Fig. 9 shows the blueprint of
the experimental area with the reference visual path (red bold
line), and snapshots of the Bebop in flight. The videos of both
experiments are available at [1].

Fig. 9. Experiment 2: Blueprint of the experimental area, the reference
path, and the snapshot of the Bebop during flights. Note that the stairs’ parts
are (3-9) and (10-15).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a visual-servoing algorithm
that allows quadrotors to autonomously navigate within a
previously-mapped area. Similar to the previous work [14],
the map is constructed offline from images collected by



a user walking though the area of interest and carrying a
quadrotor. Specifically, the visual map is represented as a
graph of images linked with edges whose weights (cost to
traverse) are inversely proportional to the number of features
common to them. Once the visual graph is constructed, and
given as input the start, intermediate and goal location of the
quadrotor, it automatically determines the desired path as a
sequence of reference images. This information is provided
to the quadrotor; it then estimates in real time the motion that
minimizes the difference between its current and reference
images, and controls its roll, pitch, yaw-rate, and thrust for
achieving that.

In the online phase, instead of employing a mixture of
2pt and 5pt RANSAC as in [14], we use the combination
of 1+1pt and 3+1pt RANSAC for determining the type
of motion required (rotational, translational with close-by
or faraway scene), and for switching to the next reference
image. Additionally, we also extend the optical-flow algo-
rithm used in [14] to adaptively process more information in
order to improve the accuracy of horizontal velocity estimate.
By exploiting the gravitational direction correspondence be-
tween an image pair, the entire algorithm can be executed
at higher rate, resulting in 2.5 times faster in navigation
speed. Finally, the improved optical-flow algorithm aids
the quadrotor the ability to fly through adverse downward
environments, hence, navigation task is achieved through an
indoor path comprising dark, textureless floor and staircases.

VI. APPENDIX

A. 1+1pt RANSAC minimal solver

Consider bearing measurements I1b f ,
I2b f to a feature

correspondence, the unit gravitational vectors I1 ĝ, I2 ĝ from
two images, and assume that the motion between them is
purely rotational, thus

I2b f = R(I2
I1

q̄)I1b f

I2 ĝ = R(I2
I1

q̄)I1 ĝ
(5)

where I2
I1

q̄ is the unit quaternion of rotation. Then, the
closed-form solution is:

I2
I1

q̄ = γ

[
(I2b f −I1 b f )× (I2 ĝ− Iq ĝ)
(I2 ĝ− I1 ĝ)T (I2b f +

I1b f )

]
where γ is the normalization factor that ensures unit length.
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